Matematika Berhingga Contoh

Konversi menjadi Notasi Interval akar kuadrat dari x+2 akar kuadrat dari x-3>0
Langkah 1
Untuk menghapus akar pada sisi kiri pertidaksamaan, kuadratkan kedua sisi pertidaksamaan.
Langkah 2
Sederhanakan masing-masing sisi pertidaksamaan.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.1
Terapkan kaidah hasil kali ke .
Langkah 2.2.1.2
Kalikan eksponen dalam .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 2.2.1.2.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.2.2.1
Batalkan faktor persekutuan.
Langkah 2.2.1.2.2.2
Tulis kembali pernyataannya.
Langkah 2.2.1.3
Sederhanakan.
Langkah 2.2.1.4
Tulis kembali sebagai .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.4.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 2.2.1.4.2
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 2.2.1.4.3
Gabungkan dan .
Langkah 2.2.1.4.4
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.4.4.1
Batalkan faktor persekutuan.
Langkah 2.2.1.4.4.2
Tulis kembali pernyataannya.
Langkah 2.2.1.4.5
Sederhanakan.
Langkah 2.2.1.5
Perluas menggunakan Metode FOIL.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.5.1
Terapkan sifat distributif.
Langkah 2.2.1.5.2
Terapkan sifat distributif.
Langkah 2.2.1.5.3
Terapkan sifat distributif.
Langkah 2.2.1.6
Sederhanakan dan gabungkan suku-suku sejenis.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.6.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.6.1.1
Kalikan dengan .
Langkah 2.2.1.6.1.2
Pindahkan ke sebelah kiri .
Langkah 2.2.1.6.1.3
Kalikan dengan .
Langkah 2.2.1.6.2
Tambahkan dan .
Langkah 2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 3
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Konversikan pertidaksamaan ke persamaan.
Langkah 3.2
Faktorkan menggunakan metode AC.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Mempertimbangkan bentuk . Tentukan pasangan bilangan bulat yang hasil kalinya (Variabel1) dan jumlahnya . Dalam hal ini, hasil kalinya dan jumlahnya .
Langkah 3.2.2
Tulis bentuk yang difaktorkan menggunakan bilangan bulat ini.
Langkah 3.3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 3.4
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.4.1
Atur sama dengan .
Langkah 3.4.2
Tambahkan ke kedua sisi persamaan.
Langkah 3.5
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.1
Atur sama dengan .
Langkah 3.5.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 3.6
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 4
Tentukan domain dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Atur bilangan di bawah akar dalam agar lebih besar dari atau sama dengan untuk menentukan di mana pernyataannya terdefinisi.
Langkah 4.2
Kurangkan pada kedua sisi pertidaksamaan tersebut.
Langkah 4.3
Atur bilangan di bawah akar dalam agar lebih besar dari atau sama dengan untuk menentukan di mana pernyataannya terdefinisi.
Langkah 4.4
Tambahkan pada kedua sisi pertidaksamaan tersebut.
Langkah 4.5
Domain adalah semua nilai dari yang membuat pernyataan tersebut terdefinisi.
Langkah 5
Gunakan masing-masing akar untuk membuat interval pengujian.
Langkah 6
Pilih nilai uji dari masing-masing interval dan masukkan nilai ini ke dalam pertidaksamaan asal untuk menentukan interval mana yang memenuhi pertidaksamaan.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 6.1.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 6.1.2
Ganti dengan pada pertidaksamaan asal.
Langkah 6.1.3
Sisi kiri lebih besar dari sisi kanan , yang berarti pernyataan yang diberikan selalu benar.
True
True
Langkah 6.2
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 6.2.2
Ganti dengan pada pertidaksamaan asal.
Langkah 6.2.3
Sisi kiri tidak sama dengan sisi kanan, artinya pernyataan yang diberikan salah.
False
False
Langkah 6.3
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 6.3.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 6.3.2
Ganti dengan pada pertidaksamaan asal.
Langkah 6.3.3
Sisi kiri lebih besar dari sisi kanan , yang berarti pernyataan yang diberikan selalu benar.
True
True
Langkah 6.4
Bandingkan interval untuk menentukan mana yang memenuhi pertidaksamaan asal.
Benar
Salah
Benar
Benar
Salah
Benar
Langkah 7
Penyelesaian tersebut terdiri dari semua interval hakiki.
atau
Langkah 8
Konversikan pertidaksamaan ke notasi interval.
Langkah 9